

PII: S0040-4020(97)00572-3

Stereoselective Synthesis of 2-Deoxy-β-glycosides From Glycal Precursors. 2. Stereochemistry of Glycosidation Reactions of 2-Thiophenyl- and 2-Selenophenyl-α-D-gluco-pyranosyl Donors

William R. Roush,* David P. Sebesta and Ray A. James

Department of Chemistry, Indiana University, Bloomington, IN 47405

Abstract: We have demonstrated that 4-O-acetyl-6-bromo-3-O-(tert-butyldimethylsilyl)-2-deoxy-2-thiophenyl-1-trichloroacetimido-α-D-glucopyranose 11b is the most efficient and selective donor for use in the synthesis of 2-deoxy-β-glycosides of the series of glycosyl donors examined. Unlike the 2-selenophenyl substituted donors 8 which proved to be configurationally unstable under standard TMS-OTf promoted glycosylation conditions, giving rise to α-manno glycosides 14, 17 and 20 from β-gluco donors 8, the 2-thiophenyl substituted donors 9 and 11 appeared to be completely configurationally stable (at C(2)). The main problem with imidates 11 is that the stereoselectivity of their reactions with alcohols is substrate dependent, with best selectivity for the desired β-glycosides 35 and 42 being obtained with the least sterically hindered alcohols. The fact that the α-glycosides 36 and 43 comprise up to 20-50% of the product in glycosidation reactions of hindered secondary alcohols supports the thesis that the reaction stereoselectivity is not governed by the intermediacy of episulfonium ions (47 and 47'), but rather that substitution reactions of oxonium ions 46 and its conformationally inverted isomer 46' play a dominant role.

© 1997 Published by Elsevier Science Ltd.

2-Deoxy-β-glycosides are important structural components of many natural products, including the aureolic acids, ^{1,2} the calicheamicins, ^{3,4} cardiac glycosides, ⁵ the angucycline antibiotics ⁶ (e.g., landomycin A⁷), and others. ^{8,9} Methods for the synthesis of 2-deoxy-β-glycosides have been reviewed. ¹⁰⁻¹² In connection with our work on the synthesis of olivomycin A (1), ¹²⁻¹⁷ we decided to pursue a strategy in which both the β- and α-2-deoxyglycosides would be constructed from glycal precursors. ^{10,18} This would facilitate the synthesis of aureolic acid di- and trisaccharide analogs designed to probe the nature of the interactions of the aureolic acid oligosaccharides with DNA. ¹⁹⁻²⁴ In this connection, we were particularly attracted to the methodology extensively developed by Thiem, ¹⁰ Danishefsky¹⁸ and Horton²⁵ for the synthesis of 2-iodo-α-D-mannosides 3 via the electrophilic substitution reactions of glycals and alcohols with NIS or I(coll)₂ClO₄, and the procedures reported by Ogawa, ²⁶ Franck, ^{27,28} Schmidt²⁹ and Beau³⁰ for the synthesis of 2-thiophenyl or 2-selenophenyl-β-D-glucosides 4 via the reactions of glycals 2 with electrophilic sulfur (PhSOR; ²⁶ arylbis(arylthio)sulfonium salts; ²⁸ PhSCl²⁹) or selenium (PhSeCl)³⁰ reagents. An additional attractive feature to this methodology is that

the heteroatom substituents at C(2) of 3 and 4 should stabilize the resulting glycosides with respect to acid catalyzed hydrolysis (an important consideration in the projected synthesis of 1). 12,31,32

In the preceding paper we described our studies of the stereochemistry of the reactions of glycals with PhSCl and PhSeCl.³³ We observed that the reactions of glycals **5** and **6** with PhSCl and PhSeCl gave excellent selectivity ($\geq 10:1$, gluco: manno) for adducts **7** and **8** only when the C(6)-X substituent is strongly electron withdrawing (e.g., X = OBn, -OTs, -Br, but not X = H). Selectivity in the PhSCl additions was also maximized when the C(4) substitute is an acetate derivative (as in **5**), whereas the best selectivity in the PhSeCl additions was obtained with substrates containing C(4)-OH groups (e.g., **6**). We report herein the results of our studies of the glycosidation reactions of **8**, **9** and **11**, resulting in the identification of trichloroacetimidate **11b** as the most efficient and selective donor for use in the synthesis of 2-deoxy- β -glycosides that we have studied to date.

AcO TBSO PhSCI,
$$CH_2CI_2$$
 AcO PhS CI Ago PhS CI TBSO PhS CI Ago PhS CI Ago PhS CI TBSO PHS CI

RESULTS AND DISCUSSION

Glycosylation Reactions of 2-Selenophenyl-β-D-gluco-pyranosyl Acetates. Prior to the initiation of our work, Beau had reported a reasonably selective protocol for the synthesis of 2-deoxy-β-glycosides via glycosidation reactions of 2-selenophenyl substituted glycosyl acetates.³⁰ We therefore anticipated that the seleno acetate donors 8 would give excellent results in glycosylation reactions leading to the C-D disaccharide unit of olivomycin A. Initial experiments performed with 8b as the donor and either β -trimethylsilylethanol or cyclohexanol as the acceptor provided the expected β-glycosides 12a and 12b with excellent selectivity, albeit in modest yield (52-54%). Based on these encouraging preliminary results, glycosidation reactions with a series of more structurally complex acceptors were performed. Treatment of cholesterol with glycosyl donor 8c^{30,33} and 0.2 equiv. of TMS-OTf in Et₂O at -20 °C provided the β-glycoside 13 in 60-70% yield. However, a significant amount of the α-manno glycoside 14 was also obtained (12-17%), suggesting that equilibration of the activated donor had occurred, presumably at the stage of an episelenonium ion. Episelenonium ion equilibration can also be inferred from the data reported by Beau, 30 as well as in related studies by Ogawa 34 and Sinay, 35 However, since Beau had suppressed C(2)-epimerization of the donors by using TMS-OTf in ethereal solvents, and because he had reported excellent results in the glycosidations of glycoside acceptors containing relatively hindered hydroxyl groups, we continued our survey of the suitability of donors 8 for use in the olivomycin synthesis. Accordingly, the coupling of donor 8c (1.25 equiv.) and acceptor 15 (prepared in three steps from 13: (i) Bu₃SnH, AIBN; (ii) Ac₂O, pyridine; (iii) TBAF, 1% HOAc, THF, 62% overall) in the presence of 0.2 equiv. of TMS-OTf in THF at -50°C provided a ca. 1:1 mixture of 16 and 17, the latter containing an α-manno linkage between the two monosaccharide units. Interestingly, the excess donor 8c used in this experiment was recovered as the α -manno acetate 18. The most significant problem of C(2)-SePh isomerization occurred in couplings with acceptors such as 19 which have very hindered alcohols (in this case flanked by two equatorial substituents): the glycosidation of 19 with donor 8b provided the α-manno disaccharide 20 as the major product (≥5: 1 selectivity) in 52% yield. All attempts to suppress the equilibration

pathway (e.g., by acylating the free hydroxyl in donors 8a and 8b; use of lower reaction temperatures) were unsuccessful.³⁶

It is clear from these results that donors such as 8 are poorly suited for use in the synthesis of complex glycosides such as those that occur in the aureolic acid trisaccharide units. Nevertheless, these data are quite interesting in that they provide insight into the glycosidation-equilibration pathway. Activation of 8 with TMS-OTf leads either to episelenonium ion 21 or the corresponding oxonium ion 23 by loss of the anomeric acetate. Our data show that as long as the nucleophile is relatively unhindered (e.g., a primary alcohol), the β -glucoside 22 is obtained with good selectivity. However, as the nucleophile becomes increasingly hindered, selectivity for the β -glucoside 22 decreases at the expense of increased production of the α -mannoside 26. This can be rationalized by noting that the transition state for substitution of 21 by the alcohol acceptor must be boat-like (see 27), since the conversion of $21 \rightarrow 22$ involves formal diequatorial opening of the episelenonium ion.³⁷⁻⁴⁰ If, on the other hand, the reaction proceeds by way of oxonium ion intermediates (e.g., $23 \Leftrightarrow 23$), then the β selectivity observed in the glycosidations of 8 can be rationalized if one assumes that the reactive conformation of the oxonium ion is the ³H₄ half-chair 23', as opposed to the ⁴H₃ half-chair 23, in which case the new C-O bond develops anti to the α-C-Se bond (i.e., Felkin-Anh mode of addition).^{41,42} This pathway (via 23') also benefits from the development of an anomeric effect in the transition state. In either event, it would be expected that transition states for substitutions via either 27 or 23' would be increasingly destabilized as the steric requirements of the alcohol acceptors (ROH) increase. Thus, the rate of the gluco substitution pathway should slow with increased steric demands of ROH, allowing competitive, reversible deselenenylation of 21 (or 23/23') to dominate, thereby providing the epimeric episelenonium ion 24 or the corresponding oxonium ion 25, either of which should undergo smooth substitution to give the α-mannoside 26. The transition states for

substitution of 24 and 25 will be chair-like.³⁷⁻⁴⁰ Moreover, axial addition of ROH to oxonium ion 25 will benefit from the development of an anomeric effect in the transition state, with additional stereoelectronic control (Felkin) deriving from interactions of the the developing C-O bond with the anti σ^*_{C-Se} orbital.

Glycosylation Reactions of 2-Thiophenyl- β -D-gluco-pyranosyl Acetates. Having determined that the 2-selenophenyl substituted donors were not suitable for our purposes, we turned our attention to the use of the analogous 2-thiophenyl substituted glycosyl acetates 9a and 9c. However, initial experiments, summarized below, indicated that these donors were not sufficiently reactive or stereoselective. For example, reactions with even simple alcohol acceptors like allyl alcohol and isopropanol required temperatures between 0 °C and room temperature, and even then the reaction of 9a with excess isopropanol did not go to completion; α -gluco acetate 29 was recovered. In the case of the reaction of 9c with allyl alcohol, a 3:1 mixture of the β - and α -glucosides 30 and 31 was obtained. Fortunately, no evidence of epimerization of the C(2)-SPh unit was observed.

These unpromising results prompted us to continue searching for a suitable activating group strategy for use with 2-thiophenyl glycosyl donors.

Glycosylation Reactions of 2-Thiophenyl-α-D-gluco-pyranosyl Trichloroacetimidates. Glycosyl trichloroacetimidates are one of the most versatile and synthetically useful classes of glycosylating agents currently available. They are highly reactive when activated by an appropriate protic or Lewis acid catalyst, and in many cases their glycosylation reactions are rapid even at -78°C. These considerations, together with the fact that Schmidt²⁹ had already demonstrated that 2-thiophenyl glycosyl trichloroacetimidates were

useful for the synthesis of 2-deoxy- β -glycosides, prompted us to turn to these derivatives for our work on the olivomycin C-D disaccharide. ¹⁵

Synthesis of trichloroacetimidates 11a and 11b was more challenging than we anticipated. Use of Schmidt's standard conditions with pyranose $10a^{33}$ (e.g., excess NaH, CCl₃CN, CH₂Cl₂) resulted in an intractable mixture of products. When milder bases such as DBU⁴⁵ (catalytic) or Cs₂CO₃⁴⁶ were used in experiments with 10a and Cl₃CCN (10 equiv.), cleaner mixtures of products was obtained. However, the product contained substantial amounts (25-30%) of the α -manno imidate 33a resulting from base catalyzed epimerization of C(2) of 10a (presumably by way of the hydroxy aldehyde tautomer 34a). The epimerization was suppressed to a large extent when the reaction with DBU was performed in trichloroacetonitrile as solvent, in which case only 5-8% of 33a,b was observed. However, under these conditions the desired α -gluco imidates 11a and 11b were obtained as the major products of ca. 2:1 mixtures with the β -gluco isomers 32a and 32b, respectively. When the latter mixtures were purified by chromatography over silica gel, the β -gluco imidates 32a and 32b selectively hydrolyzed, thereby allowing the desired α -imidates 11a and 11b to be obtained in 44-58% yield (up to 25% of lactols 10a and 10b were recovered). Better still, competitive formation of 32 and 33 was almost completely suppressed when the reactions were performed with excess NaH (6 - 10 equiv.) in trichloroacetonitrile (as solvent) at -40 °C to -20 °C. Under these conditions, imidates 11a and 11b were obtained in 81-91% yield following chromatographic purification.

Results of glycosylation reactions of various alcohol acceptors with the 6-tosyl trichloroacetimidate derivative 11a are summarized in Table 1. As expected, 29 this donor proved to be highly reactive and reactions with all acceptors were complete within a 1 h period at -78°C. Best results were obtained when the glycosidations were performed by using TMS-OTf (typically 0.3 equiv.) as the Lewis acidic activating agent, in the presence of activated 4 Å molecular sieves. Successful glycosylations have also been achieved in several cases by using BF₃*Et₂O¹⁶ and triflic acid (TfOH)⁴⁷ as the catalysts.

As the data summarized in Table 1 clearly indicate, the stereoselectivity of these reactions is highly dependent on the structure of the alcohol acceptor, with selectivity decreasing with increasing steric demand of the glycosyl acceptor. When trimethylsilylethanol (37), a representative primary alcohol, was used, the stereoselectivity was excellent (20:1) in favor of the desired β -glucoside 35a. However, the glycosidations of all secondary alcohol acceptors examined gave much lower selectivity, ranging from 8:1 for the reaction with 38, to 3-5:1 with 39 and 40, to 1:1 in the glycosidation of the relatively unreactive methyl 2,3,6-tri-O-benzyl- α -D-glucopyranoside (41).⁴⁸ In all cases, the minor products were α -glucosides; products with axial C(2)-SPh

8842 W. R. ROUSH et al.

Table 1. Glycosylation Reactions of 4-O-Acetyl-3-O-(*tert*-butyldimethylsilyl)-2-deoxy-2-thiophenyl-6-O-*p*-toluenesulfonyl-1-trichloroacetimido-α-D-qlucopyranose (11a)

Entry	ROH	Equiv. ROH	Yield*	Ratio 35 : 36 $(\beta/\alpha$ Selectivity)
1	HO SiMe ₃	2.0	80%	20 : 1
2	AcO OTS AcO SiMe ₃	1.2	95%	8 : 1
3	AcO OTS HO 39	1.5	91%	4-5 : 1
4	AcO PhS SiMe ₃	1.2	89%	3:1
5	HO OBn BnO OMe	2.0	75%	1:1

(a) Yield of glycosides 35 and 36 isolated by chromatography.
 (b) Selectivity determined by ¹H NMR analysis of the crude reaction mixture.

groups (e.g., *manno* configuration) were not observed in any cases. This indicates that the thiophenyl donors are configurationally stable at C(2), unlike the C(2)-selenophenyl derivatives discussed earlier.⁴⁹

Much better stereochemical control was achieved in glycosidation reactions with the 6-bromo trichloroacetimidate derivative 11b (Table 2). Selectivity was 20-50:1 for reactions of 11b with simple primary and secondary alcohols (entries 1-4), while the reactions with glycal 44 and the 3-hydroxy glucopyranose derivative 40 resulted in 9-10:1 selectivity favoring the desired β -glycoside 42 (compare entries 4 and 5 of Table 2, with entries 3 and 4 of Table 1). Even the reaction of 11b with the relatively unreactive 4-hydroxy glucopyranose derivative 41 provided a 3:1 mixture of 42f and 43f, which is considerably improved relative to the 1:1 mixture obtained in the reaction of 41 with 11a (compare entry 6, Table 2, with entry 5, Table 1).

Two of the most striking features about the data summarized in Tables 1 and 2 are that mixtures of β -and α -glucosides were obtained in nearly all cases, and that the stereoselectivity clearly depends on the steric requirements of the alcohol acceptor: the best selectivity is consistently obtained with the least hindered alcohols. At the outset, we expected that substitution of the activated trichloroacetimidate donors **45a,b**, either by way of a direct $S_N 2$ pathway or via the substitution of a tightly solvated trichloroacetamide-oxonium ion pair, would provide the targeted β -glucoside products **35** (X = OTs) or **42** (X = Br) with high selectivity. ^{29,43,44}

Table 2. Glycosylation Reactions of 4-O-Acetyl-6-bromo-3-O-(*tert*-butyldimethylsilyl)-2,6-dideoxy-2-thiophenyl-1-trichloroacetimido-α-D-glucopyranose (11b)

AcO TBSO	Br	TMS-OTf (0.3 eq)	AcO Br TBSO OR	AcO Br TBSO C
	PhSONH	CH ₂ Cl ₂ , -78°C 30 - 60 min	PhS	PhS OR
	11b CCI3	30 - 60 111111	42	43
Entry	ROH	Equiv. R	OH Yield ^a	Ratio 42 : 43 $(\beta/\alpha$ Selectivity) ^b
1	HO Si	Me ₃ 2.0	99%	50 : 1
2	но{	4.0	96%	22 : 1
3	но	2.0	96%	50 : 1
4	AcO Br	1.2	85%	9:1
5	AcO PhS 40 OBn	✓ SiMe ₃ 1.2	93%	10 : 1
6	HO TO BnO BnO	2.0 DMe	75%	3:1
	••			

(a) Yield of glycosides 42 and 43 isolated by chromatography.
 (b) Selectivity determined by ¹H NMR analysis of the crude reaction mixture.

Further, it was expected that if the trichloroacetimidate leaving group were to disassociate completely prior to the substitution event, the resulting oxonium ion 46a,b would be stabilized by formation of episulfonium ion 47a,b, which the literature implied should serve as an efficient precursor to the desired β -glucosides. ^{26,28,50} Clearly, however, the α -gluco products 36 and 43, which in several cases comprised 20-50% of the total product mixture, can not arise by way of such intermediates.⁴⁹ Moreover, computational studies by Liotta suggest that oxonium ions (e.g., 46a,b) and not episulfonium ions actually may be the reactive intermediates in glycosylations of 2-thioalkyl substituted pyranosides.⁵¹ While we can not rule out the possibility that the β glycoside products arise by way of episulfonium ions 47a,b, we note that this pathway faces an intrinsic kinetic barrier since the direct diequatorial substitution of 47a,b must proceed by way of a boat-like transition state, or via the boat-like conformation 47'. 37-40 In either event, one would expect that the rate of this pathway should decrease as the steric demands of the nucleophile increase, thereby permitting formation of the α-glycosides 36 (X = OTs) and 43 (X = Br) via stereoelectronically controlled axial substitution of oxonium ion 46a,b to become increasingly competitive. Given that 46a,b must be invoked to explain the formation of the α glycosides 36 and 43, it is interesting to speculate that the \beta-glycosides could also be generated by substitution of an oxonium ion intermediate. In this case, the most likely candidate is the conformationally inverted oxonium ion 46' which should undergo stereoelectronically favored axial addition of the alcohol acceptors.

This pathway should benefit from the development of an anomeric effect in the transition state. In addition, Felkin-Anh type stabilization 42 of the developing C-O bond by overlap with the σ^* orbital of the adjacent C-S bond should also play a favorable role in this transition state. As in the substitutions of the conformationally inverted episulfonium ion 47', one would expect that the rate of substitution of 46' would diminish with increased steric demands of the alcohol acceptor. Finally, the diminished selectivity of the reactions of imidate 11a compared to 11b can be rationalized in terms of the equilibrating pair of oxonium ions 46 and 46': the greater inductive effect of the tosylate compared to a bromine substituent will destabilize 46a to a larger extent than 46b, and hence 46a should be less stereodifferentiating in its reactions with nucleophiles.

We did not include trichloroacetimidate 11c in the detailed investigations reported here, since the results of a coworker indicated that this reagent is very acid sensitive and is quite difficult to prepare and handle.⁵² Moreover, 11c is significantly more reactive than either 11a or 11b, and in side-by-side comparisons 11c gave lower yields of glycosidation products. ^{16,52}

Glycosylation Reactions 2-Selenophenyl- α -D-gluco-pyranosyl Trichloroacetimidates. Given the success summarized above for the glycosylation reactions of the 2-thiophenyl substituted trichloroacetimidates 11a and 11b, and given that the 2-selenophenyl glycosyl acetate donors 8b and 8c were much more reactive than the analogous 2-thiophenyl glycosyl acetates 9a and 9c, we became interested in the possibility that 2-selenophenyl trichloroacetates 50 and 51 might be excellent glycosidation reagents. In the event, trichloroacetimidates 50 and 51 were prepared in 66-81% yield from lactols 48 and 49, which in turn were synthesized by addition of PhSeCl to the corresponding glycals followed by hydrolysis of the intermediate 2-selenophenyl glycosyl chlorides with Na₂CO₃ in aqueous THF. 12.33 Imidates 50 and 51 proved to be highly reactive glycosylating agents, giving essentially complete reaction with glycal acceptors 39 or 52 within 5-10 minutes at -78°C using TMS-OTf as the catalyst. Although disaccharides with α -manno configuration in the unit deriving from 50 and 51 were not detected, indicating that the equilibration pathway noted for the reactions of the 2-selenophenyl glycosyl donors had been suppressed, 2: 1 mixtures of the β - and α -gluco disaccharides

53 and 54 were observed in all cases. Similar results were also obtained when BF₃•Et₂O was used as the Lewis acid activator. Accordingly, we concluded that 50 and 51 are not superior to imidates 11a and 11b as glycosylating agents (c.f., Tables 1 and 2).

Summary. We have demonstrated that the 2-thiophenyl-6-bromo substituted glycosyl trichloroacetimidate 11b is the most efficient and selective donor for use in the synthesis of 2-deoxy- β -glycosides of the series of glycosyl donors examined. Unlike the 2-selenophenyl substituted donors 8 which proved to be configurationally unstable under standard TMS-OTf promoted glycosylation conditions, the 2-thiophenyl substituted donors 9 and 11 appeared to be completely configurationally stable (at C(2)). The main problem with imidates 11 is that the stereoselectivity of their reactions with alcohols is substrate dependent, with best selectivity for the desired β-glycosides 35 and 42 being obtained with the least sterically hindered alcohols. The fact that the α-glycosides 36 and 43 comprise up to 20-50% of the product in glycosidation reactions of hindered secondary alcohols supports the thesis that the reaction stereoselectivity is not governed by the intermediacy of episulfonium ions (47), but rather that substitution reactions of oxonium ion 46 and its conformationally inverted isomer 46' play a dominant role. While this methodology has proven useful for the synthesis of functionalized precursors of the olivomycin C-D-E trisaccharide, both in solution 15,16 and solid phase reactions, 17 we continue to search for improved glycosidation protocols useful for the highly stereocontrolled synthesis of 2-deoxy-β-glycosides. Our continuing efforts along these lines will be reported in due course.

Experimental Section⁵³

2-(Trimethylsilyl)ethyl 6-Bromo-3-O-(*tert***-butyldimethylsilyl)-2,6-dideoxy-2-phenylseleno-**β-**D-glucopyranoside** (**12a**). To a stirred, 0 °C mixture of **8b**³³ (133 mg, 0.247 mmol), 2-(trimethylsilyl)ethanol (32 mg, 0.27 mmol) and powdered 4 Å molecular sieves (120 mg) in THF (2.5 mL) was added TMSOTf (52 μL, 1 equiv.). The mixture was allowed to warm to ambient temperature over 1.5 h. The mixture was treated with saturated NaHCO₃ solution, diluted with EtOAc, and filtered through Celite. The filtrate was washed with saturated NaHCO₃ solution, dried over Na₂SO₄, and concentrated. Purification of the crude residue by chromatography on silica gel (eluting with EtOAc-hexanes, 1: 19) gave 77 mg (52%) of **12a**: [α ²⁸_D +35.5° (c 2.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.60 (m, 2 H), 7.29-7.20 (m, 3 H), 4.38 (d, J = 8.8 Hz, 1 H, H-1), 3.91-3.84 (m, 1 H), 3.77-3.72 (m, 1 H), 3.59-3.34 (overlapping signals, 3 H), 3.06 (dd, J = 10.4, 8.8 Hz, 1 H, H-2), 2.20 (broad s, 1 H, OH), 0.94 (s, 9 H), 0.27 (s, 3 H), 0.18 (s, 3 H), 0.02 (s, 9 H); IR (CHCl₃) 3614, 3059, 3002, 1471 cm⁻¹; HRMS calcd for C₁₉H₃₂O₄Si₂SeBr (M-C₄H₉+) m/e 539.0213; found 539.0231.

Cyclohexyl 6-Bromo-3-O-(tert-butyldimethylsilyl)-2,6-dideoxy-2-phenylseleno-β-D-gluco-

pyranoside (12b). β-Glycoside 12b (43 mg) was prepared in 54% yield from $8b^{33}$ (75 mg, 0.15 mmol) and cyclohexanol (15 mg, 0.15 mmol) in the presence of TMSOTf (15 μL) and 4Å molecular sieves (30 mg) using the procedure described for the synthesis of 12a: $[\alpha_2^{88} + 45.4^{\circ} \text{ (c 2.2, CHCl}_3); ^1\text{H NMR (400 MHz, CDCl}_3) \delta$ 7.61-7.52 (m, 2 H), 7.20-7.14 (m, 3 H), 4.59 (d, J = 9.1 Hz, H-1), 3.76 (dd, J = 11.2, 1.3 Hz, 1 H), 3.67-3.58 (m, 1 H), 3.55-3.50 (m, 2 H), 3.42 (m, 1 H), 3.13 (dd, J = 10.5, 9.1 Hz, H-2), 2.16-1.01 (overlapping signals for aliphatic ring Hs, 10 H), 0.93 (s, 9 H), 0.21 (s, 3 H), 0.15 (s, 3 H); $^{13}\text{C NMR (100 MHz, CDCl}_3) \delta$ 133.0, 130.6, 128.6, 126.8, 102.4, 78.1, 75.1, 74.1, 52.9, 33.3, 32.8, 31.3, 26.2, 25.6, 25.5, 23.9, 23.8, 18.5, -3.5, -3.6; IR (CDCl₃) 3621, 3060, 2940, 2861 cm⁻¹; HRMS calcd for C₂₀H₃₀O₄SiSeBr (M-C₄H₉+) m/e 521.0286, found 521.0271.

2-(Trimethylsilyl)ethyl 4-O-(4-O-Acetyl-3-O-(*tert*-butyldimethylsilyl)-6-bromo-2,6-dideoxy-2-selenophenyl-α-D-mannopyranosyl)-6-bromo-2,6-dideoxy-2-selenophenyl-α-D-glucopyranose (20). To a stirred, -20 °C mixture of $8b^{33}$ (52 mg, 0.097 mmol), 19^{54} (42 mg, 0.081 mmol) and powdered 4 Å molecular sieves (32 mg) in THF (1 mL) was added TMSOTf (16 μL, 1 equiv). The mixture was stirred for 2 h at -20 °C, then treated with saturated NaHCO3 solution, diluted with EtOAc, and filtered through Celite. The filtrate was washed with saturated NaHCO3 solution, dried over Na₂SO₄, and concentrated in vacuo. ¹H NMR analysis showed disaccharide 20 to be the major component (≥5 : 1) of the crude product mixture. Chromatography of the crude residue on silica gel (eluting with EtOAc-hexanes, 1: 19 then 1 : 9) gave 42 mg (52%) of 20 as a colorless wax: $[\alpha]_D^{28} + 31.3^{\circ}$ (c 2.2, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 7.79-7.76 (m, 2 H), 7.71-7.69 (m, 2 H), 7.07-6.94 (m, 6 H), 5.57 (d, J = 1.2 Hz, H-1'), 4.97 (m, H-4), 4.80 (dt, J = 9.2, 2.5 Hz, H-5'), 4.41 (dd, J = 8.8, 4.0 Hz, H-3'), 4.24 (d, J = 8.4 Hz, H-1), 4.12 (dt, J = 9.2, 6.4 Hz, 1 H), 3.94 (dt, J = 9.2, 6.4 Hz, 1 H), 3.86 (dd, J = 4.4, 1.6 Hz, H-2'), 3.79 (m, 2 H), 3.69 (dd, J = 11.2, 6.0 Hz, 1 H), 3.12 (dt, J = 10.4, 8.8 Hz, H 2), 3.10-3.05 (m, 3 H), 1.70 (d, J = 3.6 Hz, -OH), 1.55 (s, 3 H), 1.00-0.85 (m, 2 H), 0.04 (s, 3 H), 0.02 (s, 3 H), 0.03 (s, 9 H); IR (CHCl₃) 3680, 3025, 3000, 1750 cm⁻¹.

4-O-Acetyl-3-O-(*tert*-butyldimethylsilyl)-2-deoxy-2-thiophenyl-6-O-*p*-toluenesulfonyl-1-trichloroacetimido-α-D-glucopyranose (11a). To a vigorously stirred solution of pyranose 10a¹² (500 mg, 0.91 mmol) in freshly distilled trichloroacetonitrile (10 mL) was added NaH (150 mg, 7.7 equiv) portionwise. The mixture was allowed to warm to -20 °C over a 1 h period. The mixture was then stored in a -20 °C freezer overnight. Saturated aqueous NaHCO₃ was then added to the cold mixture, and the aqueous phase was separated and extracted with CH₂Cl₂. The organic phase was washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. Chromatographic purification of the crude product (silica gel, 7 : 1 EtOAc-hexanes with 1% Et₃N) provided 554 mg (91%) of the α-D-imidate 11a: R_f 0.36 (2 : 8 EtOAc-hexanes); [α_D^{20} +44.9° (c 2.7, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.67 (s, 1 H, N<u>H</u>), 7.74 (d, J = 8.4 Hz, 2 H), 7.44-7.41 (m, 2 H), 7.32-7.20 (m, 5 H), 6.31 (d, J = 3.5 Hz, 1 H), 5.01 (t, J = 9.0 Hz, 1 H), 4.20-3.95 (m, 4 H), 3.47 (dd, J = 10.1, 3.5 Hz, 1 H), 2.42 (s, 3 H), 2.10 (s, 3 H), 0.87 (s, 9 H), 0.16 (s, 3 H), 0.10 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 160.4, 144.9, 134.8, 132.5, 131.3, 129.7, 129.1, 128.1, 127.2, 95.8, 91.0, 72.3, 70.7, 70.6, 68.0, 55.7, 25.9, 21.6, 21.3, 18.1, -3.6, -4.2; IR (CDCl₃) 3358, 3079, 2978, 2903, 2872, 1770, 1750, 1663, 1605 cm⁻¹; HRMS calcd for C₂₅H₂₉O₈S₂SiCl₃N (M⁺-t-Bu), 668.0172, found, 668.0156.

Characteristic ¹H NMR data for the β -gluco imidate **32a**: δ 8.53 (s, NH), 6.38 (d, J = 8.6 Hz, H-1). Characteristic ¹H NMR data for the α -manno imidate **33a**: δ 8.52 (s, NH), 6.22 (d, J = 1.9 Hz, H-1), 4.40 (dd, J = 9.0, 3.3 Hz, H-3), 3.74 (dd, J = 3.3, 1.9 Hz, H-2).

4-O-Acetyl-6-bromo-3-O-(tert-butyldimethyl)silyl-2,6-dideoxy-2-thiophenyl-1-trichloroacetimido- α -D-glucopyranose (11b): A solution of the lactol 10b³³ (3.20g, 6.51 mmol) in freshly distilled trichloroacetonitrile (95 mL) was cooled to -40°C and treated with dry NaH powder (1.22 g, 50.8 mmol), portionwise. The mixture was left to warm to -20°C over 1h afterwhich the reaction was sealed with parafilm and placed in the freezer at -20°C for 16 - 23h. The resulting yellow solution was placed in a -20°C bath and ice added in small portions. The mixture was stirred at this temperature for 30 min, then was poured into staurated aqueous NaHCO₃ and extracted with CH₂Cl₂ (3 x). The combined organic phases were washed with brine, dried (Na₂SO₄), and concentrated under reduced pressure. The crude residue was chromatographed on silica gel using 15% EtOAc/hexanes containing 2% triethylamine to give the α -imidate 10b (4.12 g, 99% yield):

R_f 0.51 (25% EtOAc-hexanes); $[\alpha]_D^{20}$ +12.5 (c 3.6, CHCl₃); 1 H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1 H, N $_{
m H}$), 7.48-7.44 (m, 1 H), 7.31-7.21 (m, 4 H), 6.41 (d, J = 3.2 Hz, 1 H), 5.02 (dd, J = 10.1, 9.8 Hz, 1 H), 4.16 (dd, J = 10.7, 8.8 Hz, 1 H), 4.10 (br ddd, J = 9.9, 6.9, 2.8 Hz, 1 H), 3.41 (dd, J = 10.7, 3.1 Hz, 1 H), 3.38 (dd, J = 11.3, 2.8 Hz, 1 H), 3.30 (dd, J = 11.3, 6.6 Hz, 1 H), 2.16 (s, 3 H), 0.88 (s, 9 H), 0.18 (s, 3 H), 0.12 (s, 3 H); 13 C NMR (400 MHz, CDCl₃) δ 169.6, 160.4, 134.9, 133.0, 131.5, 129.2, 129.1, 128.3, 127.3, 95.9, 74.7, 72.5, 70.7, 55.8, 31.1, 25.9, 25.8, 25.6, 21.4, 18.1, -3.5, -4.1; IR (film) 3370-3260, 2960, 2930, 2900, 2860, 1750, 1680 cm⁻¹; HRMS calcd for C₁₈H₂₂NSiSBrCl₃O₅ (M⁺-t-Bu), 575.9237; found, 575.9281.

Characteristic ¹H NMR data for the α -manno imidate 33b: δ 8.62 (s, NH), 6.35 (d, J = 1.6 Hz, H-1), 4.42 (dd, J = 9.0, 3.3 Hz, H-3).

General Procedure for Glycosidation Reactions of Imidates 11a and 11b. Activated 4Å molecular sieves (ca. 40 mg/mL of CH_2Cl_2) were added to a 23°C solution of the imidate (1 equiv) and the acceptor (1.2 - 2.0 equiv) in CH_2Cl_2 (freshly distilled from P_2O_5), and the resulting mixture stirred for 15 - 20 min. The reaction mixture was then cooled to -78 °C and TMSOTf (0.3 equiv) was then added in one portion. When the reactions were complete according to TLC analysis (typically within 30 min to 1 h), they were quenched with triethylamine (3 equiv.) and diluted successively with saturated aqueous NaHCO3 and CH_2Cl_2 . The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (3 x). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to give the crude product that was purified by flash column chromatography. In all cases the product glycoside α : β ratio was calculated by integration of the appropriate, well resolved signals of the crude anomeric mixtures.

2-(Trimethylsilyl)ethyl 4-O-Acetyl-3-O-(*tert***-butyldimethylsilyl)-2-deoxy-2-thiophenyl-6-O-***p***-toluenesulfonyl-**α,β**-D-glucopyranose** (**35a**) was obtained in 80% yield (137 mg) from **11a** (178 mg, 0.25 mmol) and 2-(trimethylsilyl)ethanol (57 mg, 0.49 mmol) as a 20 : 1 (β : α) mixture of **35a** and **36a**: R_f 0.29 (20% EtOAc-hexanes); [α] $_{\rm D}^{20}$ -8.3° (c 3.5, CHCl₃); 1 H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.1 Hz, 2 H), 7.47 - 7.43 (m, 2 H), 7.34 (d, J = 8.1 Hz, 2 H), 7.27 - 7.17 (m, 3 H), 4.74 (dd, J = 9.7 Hz, 1 H, H-4), 4.33 (d, J = 8.6 Hz, 1 H, H-1), 4.01 (d, J = 5.1, 2 H), 3.78 - 3.74 (m, 1 H), 3.72 (dd, J = 9.9, 8.6 Hz, 1 H), 3.63 - 3.57 (m, 1 H), 3.49 - 3.40 (m, 1 H), 3.03 (dd, J = 9.9, 8.6 Hz, 1 H, H-2), 2.44 (s, 3 H), 2.09 (s, 3 H), 0.84 (s, 9 H), 0.83 - 0.72 (m, 2 H), 0.18 (s, 3 H), 0.06 (s, 3 H), -0.09 (s, 9 H); IR (CHCl₃) 3059, 2955, 2930, 2860, 1745, 1597 cm⁻¹; HRMS calcd for C₂₈H₄₁O₈Si₂S₂ (M⁺-t-Bu), m/e 625.1782; found 625.1763.

2-(Trimethylsilyl)ethyl 4-O-Acetyl-3-O-(4-O-acetyl-2-deoxy-3-O-(tert-butyldimethylsilyl)-2-thiophenyl-6-O-p-toluenesulfonyl- α , β -D-glucopyranosyl)-2-deoxy-6-O-p-toluenesulfonyl- α -D-arabino-hexopyranose (35b) was prepared in 95% yield as an inseparable 8 : 1 (β : α) mixture of 35b and 36b from imidate 11a (314 mg, 0.43 mmol) and acceptor 38¹⁵ (247 mg, 0.53 mmol): R_f = 0.45 (30% EtOAc in hexanes); ¹H NMR data for β -isomer 35b, (400 MHz, CDCl₃) δ 7.78 (d, J = 8.3 Hz, 2 H), 7.76 (d, J = 8.4 Hz, 2 H), 7.37 (d, J = 8.3 Hz, 1 H), 7.35 - 7.11 (m, 7 H), 4.78 (dd, J = 9.7, 8.3 Hz, 1 H, H-4'), 4.74 (br s, 1 H), 4.57 (dd, J = 9.7, 9.1 Hz, 1 H, H-4), 4.35 (d, J = 8.9 Hz, 1 H, H-1'), 4.07 - 3.95 (m, 5 H), 3.91 - 3.35 (m, 1 H), 3.03 (dd, J = 10.1, 8.9 Hz, 1 H, H-2'), 2.46 (s, 3 H), 2.43 (s, 3 H), 2.12 - 2.03 (s, 3 H), 1.92 (s, 3 H), 1.43 - 1.33 (m, 1 H), 0.98 - 0.83 (m, 2 H), 0.78 (s, 9 H), 0.13 (s, 3 H), 0.07 (s, 3 H), 0.02 (s, 9 H); partial ¹H NMR data for the α -anomer 36b, δ 4.91 (d, J = 3.5 Hz, 1 H), 3.88 (dd, J = 9.7, 9.1 Hz, 1 H, H-4), 3.10 (dd, J = 10.7, 3.1 Hz, 1 H, H-2'); IR

(obtained on the mixture; CDCl₃) 3050, 2950, 2858, 1742, 1596 cm⁻¹. Anal. Calc'd for C₄₁H₅₄O₁₅S₃Si: C, 54.96; H, 6.67. Found C, 55.06; H, 6.69.

4-O-Acetyl-3-O-(4-O-acetyl-3-O-(tert-butyldimethylsilyl)-2-deoxy-2-thiophenyl-6-O-p-toluenesulfonyl- α ,β-D-glucopyranosyl)-2-deoxy-6-O-p-toluenesulfonyl-D-arabino-hex-1-enitol (35c) was prepared in 91% yield (169 mg) as an inseparable 5 : 1 (β : α) mixture of 35c and 36c from imidate 11a (148 mg, 0.20 mmol) and acceptor 39¹⁵ (105 mg, 0.3 mmol). ¹H NMR resonances (400 MHz, CDCl₃) assigned to the β-anomer 35c: δ 7.76 (d, J = 8.1 Hz, 2 H), 7.72 (d, J = 8.3 Hz, 2 H), 7.36 - 7.29 (m, 6 H), 7.22 (t, J = 7.3 Hz, 2 H), 7.20 - 7.12 (m, 1 H), 6.13 (dd, J = 6.2, 0.8 Hz, 1 H, H-1), 5.02 (m, 1 H, H-4), 4.92 (dd, J = 9.7, 8.3 Hz, 1 H, H-3), 3.62 (m, 1 H), 3.00 (dd, J = 10.2, 8.1 Hz, 1 H, H-2′), 2.44 (s, 3 H), 2.43 (s, 3 H), 2.08 (s, 3 H), 2.01 (s, 3 H), 0.82 (s, 9 H), 0.16 (s, 3 H), 0.05 (s, 3 H); ¹H NMR resonances assigned to α-anomer 36c, δ 7.83 (d, J = 8.1 Hz, 2 H), 6.27 (dd, J = 6.5, 1.1 Hz, 1 H, H-1), 5.08 m, 1 H, H-4), 4.89 (m, H 2), 4.80 (dd, J = 9.9, 8.9 Hz, 1 H), 3.14 (dd, J = 10.5, 3.2 Hz, H-2′); IR (obtained on mixture, CDCl₃) 3066-3000, 2959, 2921, 2851, 1732, 1645, 1593 cm⁻¹. Anal. Calcd for C₄2H₅₄O₁₄S₃Si: C, 55.61; H, 5.98. Found: C, 55.79, H, 5.98.

2-(Trimethylsilyl)ethyl 4-O-Acetyl-3-O-(4-O-acetyl-3-O-(tert-butyldimethylsilyl)-2-deoxy-2thiophenyl-6-O-p-toluenesulfonyl- α , β -D-glucopyranosyl)-6-bromo-2,6-dideoxy-2-thiophenyl- β -Dglucopyranose (35d) was prepared in 89% yield (42 mg) as an inseparable 3: 1 mixture of 35d and 36d from the coupling of imidate 11a (33 mg, 0.045 mmol) and acceptor 40^{55} (26 mg, 0.054 mmol): R_f 0.48 (25% EtOAc-hexanes). ¹H NMR (500 MHz, CDCl₃) data for the β -anomer 35d (obtained on the mixture): δ 7.84 -7.78 (d, J = 8.4 Hz, 2 H), 7.48 (m, 2 H), 7.40 - 7.22 (m, 7 H), 7.22 - 7.17 (d, J = 4.2 Hz, 2 H), 7.14 - 7.08 (t, J = 4.2 Hz, 2 Hz, 7.4 Hz, 1 H), 5.22 (d, J = 8.8 Hz, 1 H, H-1'), 4.82 - 4.76 (dd, J = 9.9, 8.4 Hz, 1 H), 4.76 - 4.71 (dd, J = 9.9, 8.5 Hz, 1 H), 4.45 - 4.43 (d, J = 8.5 Hz, 1 H, H-1), 3.92 - 3.76 (m, 5 H), 3.55 - 3.45 (m, 3 H), 3.40 - 3.34 (dd, J =11.1, 2.6 Hz, 1 H), 3.30 - 3.24 (dd, J = 11.1, 8.3 Hz, 1 H), 3.16 - 3.10 (dd, J = 10.0, 9.0 Hz, 1 H), 3.10 - 3.04 (dd, J = 10.0, 8.6 Hz, 1 H), 3.04 - 2.99 (m, 1 H), 2.44 - 2.43 (s, 3 H), 2.07 - 2.05 (s, 3 H), 2.05 - 2.02 (s, 3 H),0.97 (m, 2 H), 0.82 - 0.76 (s, 9 H), 0.14 - 0.13 (s, 3 H), 0.04 - 0.02 (s, 3 H), 0.01 - -0.04 (s, 9 H); Partial ¹H NMR data for the α -anomer 36d (obtained on the mixture): δ 7.78 (d, J = 8.1 Hz, 2 H), 7.52 (d, J = 6.7 Hz, 2 H), 7.36 - 7.26 (m, 8 H), 7.26 - 7.20(t, J = 7.7 Hz, 1 H), 5.41 (d, J = 3.2 Hz, 1 H, H-1'), 5.05 - 4.95 (dd overlapping for H-4 and H-4', J = 10.8, 9.0 Hz and J = 10.6, 9.5 Hz, 2 H), 4.89 - 8.83 (m, 1 H), 4.33 (d, J = 8.4Hz, 1 H, H-1), 3.92 - 3.87 (dd, J = 10.0, 8.4 Hz, 1 H), 3.50 - 3.38 (m, 3 H), 3.28 - 3.22 (dd, J = 10.9, 3.5 Hz, 1 H), 3.13 -3.07, (dd, J = 10.0, 8.3 Hz, 1 H); 13 C NMR (400 MHz, CDCl₃; obtained on mixture) δ 170.0 169.9, 153.3, 145.2, 136.2, 133.5, 133.3, 132.9, 129.9, 129.0, 128.7, 128.5, 128.1, 128.0, 127.6, 127.5, 126.0, 125.7, 103.5, 103.0, 102.6, 101.9, 76.2, 73.2, 73.0, 72.8, 72.0, 71.6, 68.3, 67.6, 55.8, 55.7, 55.1, 53.1, 31.4, 25.8, 25.78, 21.3, 20.9, 18.0, -1.4, -1.5, -3.6, -4.1; IR (CHCl₃) 3005, 2955, 2932, 2859, 1746, 1599, 1584 cm⁻¹; FAB MS (NaOAc and 3-nitrobenzyl alcohol matrix) 1063 (M⁺ + Na) for $C_{46}H_{65}^{79}BrO_{12}S_3Si_2$ and 1065 (M⁺ + Na) for C₄₆H₆₅⁸¹BrO₁₂S₃Si₂. Anal. Calcd for C₄₆H₆₅BrO₁₂S₃Si₂: C, 53.01; H, 6.29. Found: C, 53.23; H, 6.53.

Methyl 4-O-(4-O-Acetyl-3-O-(*tert*-butyldimethylsilyl)-2-deoxy-2-thiophenyl-6-O-*p*-toluene-sulfonyl-α,β-D-glucopyranosyl)-2,3,6-tri-O-benzyl-α-D-glucopyranose (35e) was prepared in 75% yield as a 1:1 mixture (β: α) of 35e and 36e via the coupling of imidate 11a (45 mg, 0.06 mmol) and acceptor 41⁴⁸ (58 mg, 0.13 mmol). Data for 35e: R_f 0.57 (25% EtOAc-hexanes); 1 H NMR (500 MHz, CDCl₃) δ 7.76 - 7.71 (m, 2 H), 7.46 - 7.33 (m, 5 H), 7.33 - 7.24 (m, 11 H), 7.24 - 7.10 (m, 6 H), 4.78 - 4.66 (m, 4 H), 4.62 - 4.56 (br t, *J* = 11.4 Hz, 2 H), 4.55 - 4.52 (d, *J* = 3.5 Hz, 1 H), 4.40 - 4.36 (d, *J* = 12.3 Hz, 1 H), 4.24 - 4.18 (d, *J* = 9.8 Hz, 1 H), 4.16 - 4.11 (dd, *J* = 10.7, 2.6 Hz, 1 H), 3.92 - 3.86 (m, 2 H), 3.85 - 3.80 (dd, *J* = 10.6, 5.3 Hz, 1 H), 3.62 - 3.25 (m, 5 H), 2.97 - 2.91 (dd, *J* = 10.2, 8.8 Hz, 1 H), 2.38 (s, 3 H), 2.12 (s, 3 H), 0.82 (s, 9 H), 0.16 (s, 3 H), 0.07 (s, 3 H); 13 C NMR (400 MHz, CDCl₃) δ 170.3, 144.8, 139.3, 138.3, 137.8, 136.3, 129.9, 129.6, 128.7, 128.5, 128.3, 128.0, 127.99, 127.9, 127.88, 127.8, 127.1, 126.1, 102.1, 98.1, 80.2, 79.0, 75.3, 74.8, 73.8, 73.6, 73.5, 72.6, 70.9, 69.3, 69.0, 68.1, 57.1, 55.1, 25.8, 21.6, 21.4, 18.1, -3.5, -3.97; IR (CHCl₃) 3059, 2932, 2861, 1742, 1599, 1584 cm⁻¹; FAB MS (NaOAc and 3-nitrobenzyl alcohol matrix) 1051 (M⁺ + Na) for C₅₅H₆₈O₁₃S₂Si. *Anal.* Calcd for C₅₅H₆₈O₁₃S₂Si: C, 64.18; H, 6.66. Found: C, 64.18; H, 6.81.

Partial ¹H NMR data for α -anomer **36e**: δ 5.75 (d, J = 3.5 Hz, 1 H), 5.05 (s, 1 H), 4.85 (dd, J = 9.8, 9.1 Hz, 1 H), 3.96 (dd, J = 10.4, 8.8, Hz, 1 H), 3.65 (dd, J = 10.1, 8.5 Hz, 1 H), 3.59 (dd, J = 9.4, 3.5 Hz, 1 H), 3.43 (s, 3 H), 3.16 (dd, J = 10.4, 3.5 Hz, 1 H).

2-(Trimethylsilyl)ethyl 4-O-Acetyl-6-bromo-3-O-(*tert***-butyldimethylsilyl)-2,6-dideoxy-2-thiophenyl-α,β-D-glucopyranose** (**42a**) was prepared in 99% yield from the reaction of imidate **11b** (136 mg, 0.21 mmol) and 2-(trimethylsilyl)ethanol (50 mg, 4.3 mmol) as a 50 : 1 (β : α) mixture of **42a** and **43a**. Data for **42a**: R_f 0.51 (10% EtOAc-hexanes); 1 H NMR (CDCl₃) δ 7.71 - 7.46 (m, 2 H), 7.29 - 7.18 (m, 3 H), 4.79 - 4.45 (dd, J = 9.3, 8.3 Hz, 1 H), 4.42 - 4.37 (d, J = 8.4 Hz, 1 H), 3.94 - 3.86 (m, 1 H), 3.78 - 3.72 (dd, J = 9.3, 8.1 Hz, 1 H), 3.58 - 3.50 (m, 2 H), 3.39 - 3.36 (m, 2 H), 3.14 - 3.08 (dd, J = 9.9, 9.8 Hz, 1 H), 2.14 (s, 3 H), 0.86 (s, 9 H), 0.86 - 0.78 (m, 2 H), 0.20 (s, 3 H), 0.09 (s, 3 H), -0.03 (s, 9 H); 13 C NMR (CDCl₃) δ 170.1, 136.2, 131.4, 128.6, 126.7, 103.2, 75.3, 74.2, 73.3, 67.6, 56.8, 31.9, 25.9, 21.6, 18.2, 17.9, -1.5, -3.4, -4.0; IR (CHCl₃) 3054, 2957, 2932, 2888, 2861, 1746, 1584 cm⁻¹; FAB HRMS (NaOAc and 3-nitrobenzyl alcohol matrix) 613.1461 (M⁺ + Na) for C₂₅H₄₃⁷⁹BrO₅SSi₂ and 615.1455 (M⁺ + Na) for C₂₅H₄₃⁸¹BrO₅SSi₂. *Anal*. Calcd for C₂₅H₄₃BrO₅SSi₂: C, 50.74; H, 7.32; Found: C, 50.98; H, 7.48.

Isopropyl 4-O-Acetyl-6-bromo-3-O-(*tert*-butyldimethylsilyl)-2,6-dideoxy-2-thiophenyl- α ,β-D-glucopyranose (42b) was prepared in 96% yield from bromo imidate 11b (94 mg, 0.15 mmol) and freshly distilled isopropanol (35 mg, 0.60 mmol) as a 22 : 1 (β : α) mixture of glycosides 42b and 43b. Data for 42b: R_f = 0.64 (20% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.47 - 7.43 (dd, J = 8.3, 1.2 Hz, 2 H), 7.27 - 7.21 (m, 2 H), 7.19 - 7.14 (m, 1 H), 4.83 - 4.77 (dd, J = 9.5, 8.4 Hz, 1 H, H-4), 4.51 - 4.46 (d, J = 8.8 Hz, 1 H, H-1), 3.98 - 3.88 (m, 1 H), 3.75 - 3.68 (dd, J = 10.0, 8.3 Hz, 1 H), 3.56 - 3.49 (m, 1 H), 3.37 - 3.33 (d, J = 6.3 Hz, 2 H), 3.19 - 3.13 (dd, J = 10.0, 8.6 Hz, 1 H, H-2), 2.13 (s, 3 H), 2.16 (d, J = 6.3 Hz, 3 H), 1.01 (d, J = 6.0 Hz, 3 H), 0.84 (s, 3 H), 0.19 (s, 3 H), 0.07 (s, 3 H); ¹³C NMR (400 MHz, CDCl₃) δ 170.1, 130.5, 128.5, 126.2, 102.6, 75.3, 74.0, 73.2, 72.9, 57.1, 31.8, 25.9, 25.8, 23.2, 21.6, 18.2, -3.5, -4.1; IR (CHCl₃) 3061, 3044, 3009, 2974, 2959, 2932, 2886, 2859, 1740, 1584 cm⁻¹; FAB HRMS (NaOAc and 3-nitrobenzyl alcohol matrix) 555.1198 (M⁺ + Na) for C₂₃H₃₇79BrO₅SSi and 557.1185 (M⁺ + Na) for C₂₃H₃₇78PrO₅SSi. *Anal.* Calcd for C₂₃H₃₇7BrO₅SSi: C, 51.77; H, 6.99. Found: C, 52.03; H, 7.12.

Cyclohexyl 4-O-Acetyl-6-bromo-3-O-(*tert*-butyldimethylsilyl)-2,6-dideoxy-2-thiophenyl- α ,β-D-glucopyranose(42c) was prepared in 96% yield from bromo imidate 11b (115 mg 0.18 mmol) and cyclohexanol (36 mg, 0.36 mmol) as a 50: 1 (β: α) mixture of glycosides 42c and 43c. Data for 42c: R_f = 0.72 (20% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.48 - 7.43 (d, J = 8.4, 1.1 Hz, 2 H), 7.28 - 7.21 (m, 2 H), 7.18 - 7.13 (m, 1 H), 4.84 - 4.78 (dd, J = 9.5, 8.1 Hz, 1 H), 4.55 - 4.50 (d, J = 8.8 Hz, 1 H), 3.75 - 3.69 (dd, J = 9.5, 8.3 Hz, 1 H), 3.68 - 3.60 (m, 1 H), 3.56 - 3.49 (m, 1 H), 3.38 - 3.34 (m, 2 H), 3.22 - 3.16 (dd, J = 9.9, 8.8 Hz, 1 H), 2.13 (s, 3 H), 1.92 - 1.82 (m, 1 H), 1.70 - 1.54 (m, 3 H), 1.48 - 1.10 (m, 6 H), 0.83 (s, 9 H), 0.18 (s, 3 H), 0.07 (s, 3 H); ¹³C NMR (CDCl₃) δ 170.1, 136.2, 130.1, 128.5, 126.1, 102.4, 78.2, 75.4, 74.0, 73.2, 57.0, 33.2, 31.9, 31.3, 25.9, 25.6, 23.7, 23.6, 21.6, 18.2, -3.4, -4.0; IR (CHCl₃) 3040, 3009, 2936, 2859, 1742, 1584, 1522 cm⁻¹; FAB HRMS (NaOAc and 3-nitrobenzyl alcohol matrix) 595.1515 (M⁺ + Na) for C₂₆H₄₁⁷⁹BrO₅SSi and 597.1509 (M⁺ + Na) for C₂₆H₄₁⁸¹BrO₅SSi. *Anal.* Calcd for C₂₆H₄₁BrO₅SSi: C, 54.44; H, 7.20. Found: C, 54.47; H, 7.42.

4-O-Acetyl-3-O-(4-O-acetyl-6-bromo-3-O-(*tert***-butyldimethylsilyl)-2,6-dideoxy-2-thiophenyl-** α ,β-**D-glucopyranosyl)-6-bromo-2,6-dideoxy-D-***arabino***-hex-1-enitol** (**42d**) was prepared in 85% yield from the reaction of bromo imidate **11b** (2.17 g, 3.41 mmol) and glycal acceptor **44**⁵⁶ (1.02 g, 4.09 mmol) as a 9 : 1 mixture of disaccharides **42d** and **43d**. This mixture was separated by preparative HPLC [20% EtOAc-hexanes; t_R (**43d**) 12 min; t_R (**42d**) 13 min)] giving the β-anomer **42d** in 76% yield and the α-anomer **43d** in 9% yield. Data for **42d**: R_f = 0.59 (25% EtOAc in hexanes); $[\alpha]_D^{29}$ -8.6 (c 1.8, CHCl₃); 1 H NMR (500 MHz, CDCl₃) δ 7.43-7.38 (m, 2 H), 7.39-7.15 (m, 3 H), 6.41-6.37 (dd, J = 6.9, 0.8 Hz, 1 H), 5.27 - 5.23 (m, 1 H), 4.85 - 4.78 (dd, J = 9.7, 8.4 Hz, 1 H), 4.74 - 4.69 (m, 1 H), 4.66 - 4.62 (d, J = 8.8 Hz, 1 H), 4.36 - 4.30 (m, 1 H), 4.05 - 4.00 (m, 1 H), 3.75 - 3.68 (dd, J = 10.2, 8.2 Hz, 1 H), 3.61 - 3.54 (m, 1 H), 3.51 - 3.44 (dd, J = 11.6, 9.4 Hz, 1 H), 2.13 (s, 3 H), 2.06 (s, 3 H), 0.82 (s, 9 H), 0.18 (s, 3 H), 0.07 (s, 3 H); 13 C NMR (400 MHz, CDCl₃) δ 170.0,

169.6, 144.2, 135.5, 130.2, 128.8, 126.5, 102.4, 97.6, 75.4, 75.1, 74.0, 73.1, 69.1, 56.8, 31.6, 29.6, 25.8, 21.5, 21.0, 18.2, -3.5, -4.1; IR (CHCl₃) 3041, 3030, 3009, 2958, 2931, 2887, 1743, 1651 cm⁻¹; FAB MS (NaOAc and 3-nitrobenzyl alcohol matrix) 745 (M⁺ + Na) for $C_{28}H_{40}^{79}Br_2O_8SSi$ and 747 (M⁺ + Na) for $C_{28}H_{40}^{81}Br_2O_8SSi$. Anal. Calcd for $C_{28}H_{44}Br_2O_8SSi$: C, 46.41; H, 5.56. Found: C, 45.85; H, 5.41.

Partial ¹H NMR data (CDCl₃, 500 MHz) for α -anomer **43d**: δ 6.49 - 6.45 (dd, J = 6.3, 1.3 Hz, 1 H, H-1), 5.30 (t, J = 5.0 Hz, 1 H, H-2), 5.18 (d, J = 3.1 Hz, 1 H, H-1'), 5.13 - 5.08 (ddd, J = 6.3, 3.8, 0.5 Hz, 1 H, H-4), 4.88 - 4.81 (dd, J = 9.9, 8.5 Hz, 1 H, H-4'), 4.04 - 3.97 (dd, J = 10.7, 8.8 Hz, 1 H, H-3'), 3.27 - 3.22 (dd, J = 10.7, 3.2 Hz, 1 H, H-2').

2-(Trimethylsilyl)ethyl 4-O-Acetyl-3-O-(4-O-acetyl-6-bromo-3-O-(*tert***-butyldimethylsilyl)-2,6-dideoxy-2-thiophenyl-** α , β-D-glucopyranosyl)-6-bromo-2,6-dideoxy-2-thiophenyl-β-D-glucopyranose (42e) was prepared in 93% yield from the reaction of bromo imidate 11b (72 mg, 0.12 mmol) and acceptor 40⁵⁵ (65 mg, 0.14 mmol) as a 10 : 1 (β : α) mixture of the disaccharides 42e and 43e. Data for 42e: $R_f = 0.59$ (15% EtOAc-hexanes); $[\alpha]_D^{27}$ 44.8 (c 0.65, CHCl₃); 1 H NMR (500 MHz, CDCl₃) δ 7.50 (dd, J = 6.9, 2.5 Hz, 2 H), 7.28 - 7.10 (m, 8 H), 5.24 (d, J = 8.8 Hz, 1 H), 4.77 - 4.70 (dd, J = 9.7, 8.3 Hz, 1 H), 4.66 - 4.58 (dd, J = 9.7, 8.6 Hz, 1 H), 4.22(d, J = 8.6 Hz, 1 H), 3.91 - 3.82 (m, 2 H), 3.76 - 3.70 (dd, J = 10.2, 8.1 Hz, 1 H), 3.61 - 3.47 (m, 3 H), 3.43 - 3.37 (m, 2 H), 3.32 - 3.37(m, 2 H), 3.16 - 3.10 (dd, J = 8.7, 7.8 Hz, 1 H), 2.94 - 2.87 (dd, J = 10.3, 8.6 Hz, 1 H), 2.13 (s, 3 H), 2.12 (s, 3 H), 0.94 - 0.84 (m, 2 H), 0.80 (s, 9 H), 0.14 (s, 3 H), 0.05 (s, 3 H), -0.03 (s, 9 H); 13 C NMR (400 MHz, CDCl₃) δ 170.1, 169.6, 136.3, 133.1, 129.2, 129.1, 128.7, 128.6, 127.5, 125.8, 103.5, 102.6, 75.6, 74.1, 73.4, 73.2, 72.2, 67.5, 56.0, 55.0, 31.7, 31.5, 25.9, 25.6, 21.5, 21.1, 18.2, 18.1, -1.5, -3.5, -4.1; IR (CHCl₃) 3046, 2968, 2428, 1747 cm⁻¹; FAB MS (NaOAc and 3-nitrobenzyl alcohol matrix) 971 (M⁺ + Na) for C₃₉H₅₈⁷⁹Br₂O₉SSi₂ and 973 (M⁺ + Na) for C₃₉H₅₈⁸¹Br₂O₉S₂Si. Anal. Calcd for C₃₉H₅₈Br₂O₉S₂Si₂: C, 49.26; H, 6.15. Found: C, 49.34; H, 6.22.

Partial ¹H NMR data (500 MHz, CDCl₃) for α -anomer **43e**: δ 5.33 (d, J = 3.2 Hz, 1 H, H-1'), 4.90 (t, J = 8.8 Hz, 1 H), 4.88 (t, 9.1 Hz, 1 H), 4.39 (d, J = 8.8 Hz, 1 H, H-1), 5.19 (dd, J = 8.9, 9.7 Hz, 1 H), 4.05 (dd, J = 10.8, 8.8 Hz, 1 H), 3.94 (dd, J = 10.7, 3.6 Hz, 1 H, H-2'), 3.19 (dd, J = 10.0, 8.9 Hz, 1 H, H-1).

Methyl 4-O-(4-O-Acetyl-6-bromo-3-O-(*tert*-butyldimethylsilyl)-2,6-dideoxy-2-thiophenyl-α,β-D-glucopyranosyl)-2,3,6-tri-O-benzyl-α-D-glucopyranose (42f) was prepared in 87% yield as a 3 : 1 mixture of 42f and 43f from bromo imidate 11b (96 mg, 0.16 mmol) and acceptor 41⁴⁸ (144 mg, 0.31 mmol). Data for 42f: $R_f = 0.37$ (25% EtOAc in hexanes); ¹H NMR (500 MMz, CDCl₃) δ 7.46 - 7.39 (m, 6 H), 7.37 - 7.24 (m, 11 H), 7.23 - 7.12 (m, 4 H), 4.88 - 4.81 (d, J = 11.3 Hz, 1 H), 4.82 - 4.66 (m, 3 H), 4.62 - 4.56 (d, J = 12.0 Hz, 1 H), 4.56 - 4.52 (d, J = 3.9 Hz, 1 H), 4.45 - 4.40 (d, J = 12.0 Hz, 1 H), 4.30 - 4.25 (d, J = 8.8 Hz, 1 H), 4.20 - 4.15 (dd, J = 10.7, 2.6 Hz, 1 H), 4.05 - 3.99 (dd, J = 9.9, 9.2 Hz, 1 H), 3.44 - 3.38 (dd, J = 10.0, 8.3 Hz, 1 H), 3.36 - 3.31 (br overlapping m, 4 H), 3.28 - 3.21 (m, 2 H), 3.14 - 3.08 (m, 1 H), 3.06 - 3.00 (dd, J = 10.0, 9.2 Hz, 1 H), 2.15 - 2.12 (s, 3 H), 0.86 - 0.82 (s, 9 H), 0.19 - 0.16 (s, 3 H), 0.09 - 0.06 (s, 3 H); ¹³C NMR (400 MHz, CDCl₃) δ 170.0, 139.5, 138.0, 136.3, 129.6, 128.62, 128.56, 128.5, 128.3, 128.1, 128.0, 127.9, 127.7, 127.2, 126.2, 102.0, 98.2, 80.1, 78.9, 75.3, 75.1, 75.0, 73.6, 73.4, 72.8, 69.4, 68.2, 63.6, 57.2, 55.1, 31.1, 25.8, 24.5, 21.6, 18.1, -3.4, -4.0; IR (CHCl₃) 3065, 3032, 3009, 2953, 2932, 2901, 2861, 1740, 1584 cm⁻¹; FAB MS (NaOAc and 3-nitrobenzyl alcohol matrix) 959 (M⁺ + Na) for C₄₈H₆₁BrO₁₀SSi. Anal. Calcd for C₄₈H₆₁BrO₁₀SSi: C, 61.46; H, 6.55; Found: C, 60.95; H, 6.69.

Partial ¹H NMR data (500 MMz, CDCl₃) for α-anomer **43f**: δ 5.87 - 5.84 (d, J = 3.2 Hz, 1 H), 5.41 - 5.38 (d, J = 3.5 Hz, 1 H), 5.23 - 5.17 (dd, J = 10.1, 9.1, 1 H), 5.15 - 5.10 (t, J = 8.2 Hz, 1 H), 4.96 - 4.89 (t, J = 10.0 Hz, 1 H), 4.35 - 4.30 (t, J = 8.7 Hz, 1 H), 3.24 (dd, J = 9.8, 3.5 Hz, 1 H, H-2).

6-Bromo-3-O-(6-bromo-4-O-chloroacetyl-2,6-dideoxy-2-phenylselenyl-3-O-triethylsilyl-β-D-glucopyranosyl)-4-O-chloroacetyl-2,6-dideoxy-D-*arabino***-hex-1-enitol (54**β) was prepared in 55% yield from the reaction of bromo imidate **51** (53.8 mg, 75 μmol) and glycal acceptor **52** (25.7 mg, 90 μmol) as an inseparable 2 : 1 mixture of β– and α-disaccharides in toluene at -78°C using 0.3 equiv of BF₃*Et₂O as catalyst: R_f 0.61 (30% EtOAc in hexanes); IR (film) 2957, 2914, 2878, 1766, 1650, 1579, 1479, 1413, 1310, 1248, 1162, 1133, 1057, 1010, 916, 804 cm⁻¹. Data for β-anomer **54**β: ¹H NMR (400 MHz, CDCl₃) δ 7.57 - 7.51 (m, 2 H), 7.28 - 7.25 (m, 3 H), 6.42 - 6.38 (d, J = 6.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 4.91 - 4.84 (dd, J = 9.6, 8.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 6.42 - 6.38 (dd, J = 6.3 Hz, 1 H), 5.41 - 5.39 (m, 1 H), 6.42 - 6.38 (dd, J = 6.3 Hz, 1 H), 5.41 - 5.3

1 H), 4.79 - 4.75 (ddd, J = 6.0, 4.4, 1.3 Hz, 1 H), 4.75 - 4.70 (d, J = 9.1 Hz, 1 H, H-1), 4.39 - 4.31 (m, 1 H), 4.11 (s, 2 H), 4.07 (s, 2 H), 3.84 - 3.78 (dd, J = 10.4, 8.2 Hz, 1 H, H-3), 3.66 - 3.61 (m, 1 H), 3.54 - 3.30 (m, 4 H), 3.18 - 3.12 (dd, J = 10.2, 9.3 Hz, 1 H, H-2), 0.97 - 0.91 (t, J = 7.9 Hz, 9 H), 0.65 (q, J = 7.9 Hz, 6 H); ¹³C NMR (400 MHz, CDCl₃) δ 166.3, 166.2, 144.2, 133.2, 129.0, 127.5, 102.9, 97.8, 76.55, 74.9, 73.4, 70.8, 69.9, 52.8, 40.7, 31.2, 29.2, 6.9, 5.1; Partial data for α-anomer **54**α: ¹H NMR (400 MHz, CDCl₃) δ 6.48 - 6.44 (dd, J = 6.3, 1.1 Hz, 1 H), 5.28 - 5.25 (d, J = 3.2 Hz, 1 H, H-1), 5.14 - 5.10 (dd, J = 6.3, 3.5 Hz, 1 H), 4.94 - 4.88(dd, J = 10.8, 8.8 Hz, 1 H), 4.27 - 4.22 (m, 1 H), 4.17 (s, 2 H), 4.13 (s, 2 H), 4.04 - 4.00 (m, 1 H), 3.22 - 3.17 (dd, J = 10.8, 3.3 Hz, 1 H, H-2), 0.94 - 0.88 (t, J = 8.4 Hz, 9 H), 0.68 (q, J = 8.4 Hz, 6 H); ¹³C NMR (400 MHz, CDCl₃) δ 166.3, 166.2, 144.4, 132.1, 129.2, 127.2, 101.2, 100.3, 75.1, 73.3, 72.6, 70.5, 52.1, 40.8, 31.4, 29.4.

References

- Remers, W. A. In *The Chemistry of Antitumor Antibiotics*; Wiley-Interscience: New York, 1979; pp 133-175.
- (2) Remers, W. A.; Iyengar, B. S. In *Cancer Chemotherapeutic Agents*; W. O. Foye, Ed.; ACS: 1995; pp 578.
- (3) Lee, M. D.; Dunne, T. S.; Chang, C. C.; Siegel, M. M.; Morton, G. O.; Ellestad, G. A.; McGahren, W. J.; Borders, D. B. J. Am. Chem. Soc. 1992, 114, 985.
- (4) Nicolaou, K. C.; Dai, W.-M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1387.
- (5) Henderson, F. G. In *Digitalis*; C. Fish and Surawicz, Eds.; Grune and Stratton: New York, 1969; pp 3-21.
- (6) Rohr, J.; Thiericke, R. Nat. Prod. Rep. 1992, 9, 103.
- (7) Weber, S.; Zolke, C.; Rohr, J.; Beale, J. M. J. Org. Chem. 1994, 59, 4211.
- (8) Muntwyler, R.; Keller-Schierlein, W. Helv. Chim. Acta 1972, 55, 2071.
- (9) Mallams, A. K.; Puar, M. S.; Rossman, R. R.; McPhail, A. T.; Macfarlane, R. D.; Stephens, R. L. J. Chem. Soc., Perkin Trans. I 1983, 1497.
- (10) Thiem, J.; Klaffke, W. Topics Curr. Chem. 1990, 154, 285.
- (11) Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503.
- (12) Roush, W. R.; Lin, X.-F. J. Am. Chem. Soc. 1995, 117, 2236.
- (13) Roush, W. R.; Michaelides, M. R.; Tai, D. F.; Lesur, B. M.; Chong, W. K. M.; Harris, D. J. J. Am. Chem. Soc. 1989, 111, 2984.
- (14) Roush, W. R.; Murphy, M. J. Org. Chem. 1992, 57, 6622.
- (15) Sebesta, D. P.; Roush, W. R. J. Org. Chem. 1992, 57, 4799.
- (16) Roush, W. R.; Briner, K.; Kesler, B. S.; Murphy, M.; Gustin, D. J. J. Org. Chem. 1996, 61, 6098.
- (17) Hunt, J. A.; Roush, W. R. J. Am. Chem. Soc. 1996, 118, 9998.
- (18) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. Engl. 1996, 35, 1380.
- (19) Gao, X.; Mirau, P.; Patel, D. J. J. Mol. Biol. 1992, 223, 259.
- (20) Sastry, M.; Patel, D. J. Biochemistry 1993, 32, 6588.
- (21) Walker, S.; Valentine, K. G.; Kahne, D. J. Am. Chem. Soc. 1990, 112, 6428.
- (22) Silva, D. J.; Kahne, D. E. J. Am. Chem. Soc. 1993, 115, 7962.
- (23) Silva, D. J.; Goodnow, R., Jr.; Kahne, D. Biochemistry 1993, 32, 463.
- (24) Silva, D. J.; Kahne, D.; Kraml, C. M. J. Am. Chem. Soc. 1994, 116, 2641.
- (25) Horton, D.; Priebe, W.; Sznaidman, M. Carbohydr. Res. 1990, 205, 71.
- (26) Ito, Y.; Ogawa, T. Tetrahedron Lett. 1987, 28, 2723.
- (27) Ramesh, S.; Franck, R. W. J. Chem. Soc., Chem. Commun. 1989, 960.
- (28) Grewal, G.; Kaila, N.; Franck, R. W. J. Org. Chem. 1992, 57, 2084.
- (29) Preuss, R.; Schmidt, R. R. Synthesis 1988, 694.
- (30) Perez, M.; Beau, J.-M. Tetrahedron Lett. 1989, 30, 75.
- (31) Overend, W. G.; Rees, C. W.; Sequeira, J. S. J. Chem. Soc. 1962, 3429.
- (32) Buncel, E.; Bradley, P. R. Can. J. Chem. 1967, 45, 515.
- (33) Roush, W. R.; Sebesta, D. P.; Bennett, C. E. Tetrahedron 1997, preceding paper in this issue.
- (34) Ito, Y.; Ogawa, T. Tetrahedron 1990, 46, 89.
- (35) Jaurand, G.; Beau, J.-M.; Sinaÿ, P. J. Chem. Soc., Chem. Commun. 1981, 572.

(36) For example, use of the acetate derivative of 8c (e.g., i)as a donor in the reaction with cholesterol gave non-reproducible results. In several experiments, the β-glucoside ii was obtained with selectivity of 3-6:
1, however in one case the α-mannoside iii predominated (4: 1 selectivity). This reflects the dependence of these glycosidations on subtle variations in reaction conditions.

- (37) Fürst, A.; Plattner, P. A. In Abstr. of Papers, 12th Intern. Congr. Pure Appl. Chem.; New York, 1951; pp 409.
- (38) Fürst, A.; Scotoni, R., Jr. Helv. Chim. Acta 1953, 1332 and 1410.
- (39) Angyal, S. J. Chem. Ind. (London) 1954, 1230.
- (40) Eliel, E. L.; Allinger, N. L.; Angayal, S. J.; Morrison, G. A. Conformational Analysis; Wiley Interscience: New York, 1965.
- (41) Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 2199.
- (42) Anh, N. T.; Eisenstein, O. Nouv. J. Chim. 1977, 1, 61.
- (43) Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25, 212.
- (44) Schmidt, R. R. In Comprehensive Organic Synthesis; B. M. Trost, Ed.; Wiley: 1991; Vol. 6; pp 33-64.
- (45) Zimmermann, P.; Greilich, U.; Schmidt, R. R. Tetrahedron Lett. 1990, 31, 1849.
- (46) Urban, F. J.; Moore, B. S.; Breitenbach, R. Tetrahedron Lett. 1990, 31, 4421.
- (47) Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001.
- (48) Garegg, P. J.; Hultberg, H.; Wallin, S. Carbohydr. Res. 1982, 108, 97.
- (49) Control experiments established that glycosides 35d and 42a,b,d,e are stable under the reaction conditions (0.3 equiv. TMSOTf, CH₂Cl₂, 4Å sieves, -78°C; ≥98% recovery).
- (50) Nicolaou, K. C.; Ladduwahetty, T.; Randall, J. L.; Chucholowski, A. J. Am. Chem. Soc. 1986, 108, 2466.
- (51) Jones, D. K.; Liotta, D. C. Tetrahedron Lett. 1993, 34, 7209.
- (52) Murphy, M. Ph. D. Thesis, Indiana University, 1993.
- (53) For general experimental details, see: Roush, W. R.; Lin, X.-F. J. Am. Chem. Soc. 1995, 117, 2236. Unless otherwise noted, all compounds purified by chromatography are sufficiently pure (>95% by ¹H NMR analysis) for use in subsequent reactions.
- (54) Alcohol 19 was prepared in 77% overall yield from 12a by sequential acylation (Ac₂O, pyridine, CH₂Cl₂) and removal of the TBS protecting group (Et₃N-HF, CH₃CN, 23°C, 24 h).
- (55) Acceptor 40 was prepared by desilvlation of 42a (Et₃N-HF, CH₃CN, 23°C, 36-48 h, 83% yield).
- (56) Acceptor 44 was prepared by desilylation of glycal 5d (HF-pyridine, THF, 0 °C, 96% yield).

Acknowledgement. We gratefully acknowledge the National Institutes of Health (GM 38907 and RR 10537) for support of this research program, and thank Prof. G. Keck for helpful discussions concerning the involvement of conformationally inverted oxonium ion **46'** in the glycosidation sequence.

(Received 6 January 1997; accepted 7 April 1997)